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Abstract

A theoretical analysis of the mechanism and the kinetics of non-stationary absorption is proposed in an immobile
liquid at big concentration gradients, when the mass transfer may be a result of a natural convection, non-linear
mass transfer and the Marangoni e�ect. It is shown that the Marangoni e�ect is negligible under these conditions
and the ¯ow rate is limited by the non-linear mass transfer. The rate of the mass transfer is determined. 7 2000
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1. Introduction

Experimental studies of systems with intensive mass
transfer show, in many cases, serious deviations from

the linear theory of mass transfer, which indicates
independence of the velocity ®eld from the ®elds of
concentration and temperature. These e�ects are

usually considered as Marangoni e�ects [1±3] and are
explained with the occurrence of tangential secondary
¯ow on the phase boundary, caused by the surface ten-

sion gradient as a result of surface gradients of concen-
tration or (and) temperature on the mass transfer
surface.
Theoretical studies of systems with intensive inter-

phase mass transfer as a result of big concentration
gradients showed [4±8] that these gradients induce nor-
mal secondary ¯ows on the phase boundary. On this

basis, the non-linear theory of mass transfer [9,10] was

built, that also explains the satisfactory deviations of

experimental results from the linear theory of mass

transfer.

The above mentioned results illustrate the possibility

for the simultaneous or independent existence of two

mechanisms of heat mass transfer in systems with

intensive mass transfer. This makes it necessary to de-

®ne the conditions for occurrence of the e�ects of

Marangoni and the non-linear mass transfer, which

will make possible the creation of adequate models of

the chemical engineering processes, under conditions of

intensive interphase mass transfer between two phases.

The linear analysis of the hydrodynamic stability

in systems with intensive interphase mass transfer

showed [11±14] that the normal and the tangential

components of the velocity on the phase boundary

in¯uences the hydrodynamic stability of ¯ows in the

boundary layer, and the in¯uence of the normal

component is signi®cantly greater. This suggests that
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a considerable di�erence is possible in the intensity

of the e�ects of Marangoni and the non-linear mass

transfer.

The comparative analysis of these two e�ects was

made in the cases of mass transfer between two

phases (gas±liquid and liquid±liquid) [15,16], when

substance from the ®rst phase goes to the second

phase and reacts chemically with it. The big concen-

tration gradients of the transferred substance create

a normal secondary ¯ow on the phase boundary.

On the other hand, the thermal e�ect of the chemi-

cal reaction creates a gradient of the surface tension

as a result of the temperature non-homogeneity at

the phase interface, i.e. tangential secondary ¯ow on

the phase boundary.

The obtained theoretical results showed [15,16]

that the Marangoni e�ect is negligible than the

e�ect of the non-linear mass transfer, i.e. the kin-

etics of mass transfer and the hydrodynamic stab-

ility do not depend on the surface tension gradient,

caused by the temperature non-homogeneity at the

phase interface as a result of the thermal e�ect of

the chemical reaction. It should be noted, however,

that the parameter, representing the Marangoni

e�ect, increases with the decrease of the character-

istic velocity in the second phase. The obtained

results [16], when this phase is immovable, showed

that under these conditions, the Marangoni e�ect is

also considerably smaller.

The above mentioned investigations showed that the

occurrence of the Marangoni e�ect may be expected in

the limit case of mass transfer between two immovable

phases in the absorption of pure gases in an immov-

able liquid. Under these conditions, it is possible for

three processes to take place: natural convection, non-
linear mass transfer and Marangoni e�ect.
Actually, these three e�ects may have a dual in¯u-

ence on the mechanism and kinetics of heat mass
transfer in systems with intensive interphase mass
transfer. The ®rst in¯uence is relatively weak and is a

result of the secondary ¯ows, that change the velocity
®eld. However, this may lead to changes in the hydro-
dynamic stability and, therefore, to the creation of

self-organizing dissipative structures, having the form
of stable periodic ¯ows, that have a very strong in¯u-
ence on the mechanics and the kinetics of mass trans-
fer. These two types of in¯uences will be discussed

consequently in the two parts of this paper.

2. Mathematical model

Let us consider a vertical tube with a radius r0, in
which an immovable liquid (H2O) contacts an immov-
able gas (CO2, SO2, NH3). The gas is absorbed in the

liquid, and the process is accompanied by a thermal
e�ect. As a result, several e�ects in the liquid may
occur, having the form of secondary ¯ows due to the
big concentration gradients on the phase boundary

(non-linear mass transfer), the density gradient in
volume (natural convection) and the surface tension
gradient (Marangoni e�ect).

The mathematical description of this process will be
done under the approximation of Oberbeck±Bousinesq
equations [17±19], where the in¯uence of the density

gradient [20,21], the concentration gradient [9,10] and
the surface tension gradient [22±24] will be considered.
In this way, in cylindrical coordinates, the problem has

Nomenclature

c concentration
c� equilibrium concentration
D di�usivity

g earth gravity
i mass ¯ow
J absorption rate

k mass transfer coe�cient
l depth of velocity change
p pressure

q thermal e�ect of the chemical reaction
Q quantity of the absorbed substance
r radial coordinate
r0 radius of the liquid column

t time coordinate
t0 time for process performance
vz axial velocity component

vr radial velocity component
vj angle velocity component
z axial coordinate

Sh Sherwood number

Greek symbols

b coe�cient of thermal expansion
y temperature
y0 initial temperature

l heat conductivity
m viscosity
p = 3.14
r density

r0 solvent density
s surface tension
j angle coordinate
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with the corresponding initial and boundary con-
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t � 0, vz � vr � vj � c � 0, y � y0; �8�

z � 0, vz � ÿD

r0

@c

@z
,

m

�
@vr
@z
� @vz
@r

�
� @s
@ r
� @s
@y
@y
@r

,m
�
@vj
@z
� 1

r

@vz
@j

�

� 1

r

@s
@j
� 1

r

@s
@y
@y
@j

, c � c�,

l
@y
@z
� qD

@c

@z
;

�9�

z41, vz � vr � vj � c � 0, y � y0; �10�

r � 0, vz, vr, vj, c, y � finite; �11�

r � r0, vz � vr � vj � 0,
@c

@r
� @y
@ r
� 0: �12�

We will assume that along the angle j processes are

periodical with a period 2p:
Eq. (1) refers to the natural convection by means of

the Archimedian force g�rÿ r0�: Eq. (9) takes into
consideration the large concentration gradients

through the connection between the velocity vz and the
concentration gradient @c=@z and the surface tension
gradient �s� by means of its components on r and j
and their connection with the tangential components
of the tension tensor at the surface z � 0: Eq. (12)
gives the conditions at the solid surface of the tube.

3. Dimensionless variables

The problem Eqs. (1)±(12) may be presented in a
dimensionless form if the known scales of the physical
independent and dependent variables are used. These
characteristic scales should be selected in such a way

that the values of the dimensionless variables and par-
ameters are not greater in order, than unity.
The characteristic scales may be set in advance and

for the discussed example they are of the following
order for the time, radial coordinate, concentration
and temperature:

t00102 s, r0010ÿ2 m, c�0�1±100� kg=m3

�for different gases�, y0010 8C:
�13�

The characteristic scales will be used in all cases when

the character scales are not known in advance, and
will be determined as a result of the quality analysis of
the model Eqs. (1)±(12). If we mark the characteristic

scale of the velocity along the z axis by u0, then the
scales of the other components of velocity are deter-
mined in a way that the equation of continuity (4) is
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satis®ed in dimensionless variables, and for a charac-
teristic scale of pressure, the dynamic pressure r0u

2
0 is

used.
The di�erence in the orders of m, D and l shows

that the basic change in the velocity, concentration

and temperature will be reached at a di�erent depth of
the water column. These characteristic depths for the
velocity (l ), concentration �d� and temperature (h ) will

be determined by the quality analysis of Eqs. (1)±(6).
Using the above mentioned considerations, the fol-

lowing dimensionless variables are obtained:

t � t0T, z � lZ1 � dZ2 � hZ3, r � r0R, j � 2pF,

p � r0u
2
0P,
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The introduction of Eq. (14) into Eqs. (1)±(12) con-
verts the problem into a dimensionless form, where the
dimension parameters are grouped in such a way that

the dimensionless parameters are obtained in the order
of unity, lower than unity (10ÿ1) and much lower than
unity �R10ÿ2):
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Along the F coordinate, the functions are periodical,
with a period 1.

4. Qualitative analysis

The qualitative analysis of the model Eqs. (15)±(25)
begins with the determination of the characteristic

scales. The discussed process is a result of the absorp-
tion of the gas and its thermal e�ect, i.e. the ®eld of
concentration and temperature is determined by the

di�usion and the heat transfer. From here, it directly
follows that the parameters in front of the Laplacians
in Eqs. (19) and (20) should be of the order of unity;
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linear scales of d and h:
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As a result of the di�usion and the heat transfer, con-
ditions for a natural convection arise, whose in¯uence
on the velocity ®eld appears when the parameter in

front of the Laplacians in Eqs. (15)±(17) is of the
order of unity (viscose ¯ow):
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From Eq. (28), it is obvious that it is not necessary to
determine the characteristic velocity of the ¯ow, which
depends on the limitation process. Natural convection

can not limit the velocity, because at di�usion and
heat transfer in a stagnant liquid [17±19] there is a
mechanical equilibrium �u0 � 0� and the natural con-

vection is a result of the loss of stability.
The large concentration gradients induce a second-

ary ¯ow, whose characteristic velocity may be deter-

mined, if the parameter of the non-linear mass transfer
in Eq. (22) is of the order of unity:
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In this way, the characteristic scales l and u0 are
obtained directly from Eqs. (28) and (29):
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The attempt to de®ne the characteristic velocity from
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the Marangoni e�ect, i.e. from the condition
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cases when the characteristic radius is very small, are
exceptions:
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The characteristic scales in Eqs. (27) and (30), deter-
mined in this way, allow the determination of the
order of the parameters in Eqs. (15)±(22):
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The dimensionless parameters in the model (Eqs. (15)±

(25)), determined in this way, are not greater in order
than unity, which is a necessary condition for the auth-
enticity of the result from the qualitative analysis.

From Eq. (33), evidently, the parameter of the Mar-
angoni e�ect (31) is of the order of 10ÿ3 and does not
in¯uence the velocity, concentration and temperature
®eld. Analogous results are achieved [22±24] in the

analysis of the simultaneous in¯uence of the natural
convection and the Marangoni e�ect in the cases of a
®xed thickness of the water column, greater than 10ÿ3

m. This result shows that under conditions of an inten-
sive mass transfer, the natural convection and the non-
linear mass transfer lead to a ¯ow, whose characteristic

velocity is of two orders greater than the velocity, at
which the Marangoni e�ect may occur.
Another signi®cant result of Eq. (33) is that

by0 << �c�=r0� < 1, i.e. the temperature change does
not in¯uence the density r, and further we will assume

b � 0:
The di�erent e�ects in the complex process take

place when their corresponding parameters are > 10ÿ2,
i.e. the problem ((15)±(25)) may be expressed as a
zero-order approximation regarding the parameters of
order lower than 10ÿ2 (and smaller). In this way, from

Eqs. (15)±(25) and (33), it follows that:
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In the above mentioned system, Eq. (35) is super¯uous,
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because in these approximations the pressure is
eliminated �P � 0�: For the de®nition of Vr, Eq. (37) is

used, and the obtained solution satis®es Eq. (35).

5. Asymptotic solution

The solution of Eqs. (34)±(43) depends on two
parameters �a, e�, where e is a small parameter and the

solutions may be expressed in an expansion of e in the
form:
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The introduction of Eq. (44) into Eqs. (34)±(43) makes
it possible to ®nd the zero-order approximations
�e � 0�:

@ 2V �0�z

@Z 2
1

� C �0� � 0;

Z1 � 0, V �0�z � ÿ
 
@ ~C
�0�

@Z2

!
Z2�0

;

Z141, V �0�z � 0:

�45�

@ 2V �0�j

@Z 2
1

� 0;

Z1 � 0,
@V �0�j

@Z1
� 0; Z141, V �0�j � 0: �46�

@V �0�r

@R
� V �0�r

R
� ÿ@V

�0�
z

@Z1
ÿ 1

R

@V �0�j

@F
;

R � 0, V �0�r � 0 �finite�: �47�

@ ~C
�0�

@T
� @ 2 ~C

�0�

@Z 2
2

;

T � 0, ~C
�0� � 0; Z2 � 0, ~C

�0� � 1;

Z241, ~C
�0� � 0:

�48�

@
~~Y�0�

@T
� @ 2

~~Y�0�

@Z 2
3

;

T � 0,
~~Y � 1; Z3 � 0,

@
~~Y�0�

@Z3
� 0;

Z341,
~~Y�0� � 1:

�49�

The solutions of Eqs. (46), (48) and (49) are obtained
directly.

V �0�j � 0, ~C
�0� � erfc

Z2

2
����
T
p ,

~~y�0� � 1: �50�

From Eqs. (14) and (50), it is clear that:

C �0� � erfc

�
l

d
Z1

2
����
T
p

�
11, a0 � l

d
010ÿ3: �51�

The introduction of Eq. (51) into Eq. (45) allows the
determination of V �0�z , replacing the in®nity condition

with Vz�1� � 0:

V �0�z � ÿ
1

2
Z 2

1 �
�
1

2
ÿ 1������

pT
p

�
Z1 � 1������

pT
p : �52�

Replacing Eqs. (50) and (52) into Eq. (47) leads to:

V �0�r �
�
1

2
Z1 � 1

2
������
pT
p ÿ 1

4

�
R: �53�

The problem for determination of the ®rst approxi-
mation of the concentration ~C

�1�
is of the type:

@ ~C
�1�

@T
� @ 2 ~C

�1�

@Z 2
2

ÿ ~V
�0�
z

@ ~C
�0�

@Z2
;

T � 0, ~C
�1� � 0; Z2 � 0, ~C

�1� � 0;

Z241, ~C
�1� � 0,

�54�

where

~V
�0�
z �Z2, T� � V �0�z �Z1, T�, Z1 � 1

a0
Z2: �55�

From Eq. (55), it directly follows that the volume
source in Eq. (54):

~V
�0�
z

@ ~C
�0�

@Z2
6� 0 for 0RZ2 < a0010ÿ3, �56�

i.e. it in¯uences the mass transfer practically on the
interface �Z2 � 0� and may be replaced by a surface
¯ow:
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S �
�a
0

~V
0

z

@ ~C
�0�

@Z2
dZ2: �57�

Thus, the problem (54) takes the form:

@ ~C
�1�

@T
� @ 2 ~C

�1�

@Z 2
2

;

T � 0, ~C
�1� � 0; Z2 � 0,

@ ~C
�1�

@Z2
� ÿS;

Z241, ~C
�1� � 0:

�58�

S � ÿ
�����
T

p

r
a0 eÿ�a2=4T� ÿ ���

p
p

erf

h
a=
ÿ
2
����
T
p �i

a20

ÿ
 �����

T

p

r
ÿ 2

p

!
eÿ�a2=4T� ÿ 1

a0
ÿ 1������

pT
p erf

a0
2T

�59�

From Eq. (59), it is clear that for small values of
a0 �a0010ÿ3�, S10, therefore

~C
�1� � 0 �60�

It is not di�cult to show that

V �1�z � 0, V �1�r � 0, V �1�j � 0,
~~y�1� � 0: �61�

6. Mass transfer kinetics

The average absorption rate J (per unit mass inter-

face) for a time interval t0 may be expressed by means
of the mass transfer coe�cient k. It may be determined
from the average mass ¯ux I

J � kc� � 1

t0

�t0
0

I dt, I � ÿDr�

r0

�
@c

@z

�
z�0

,

r� � r0 � c�:

�62�

Thus, Eq. (62) may be used to obtain the Sherwood
number for a non-stationary di�usion:

Sh � kt0
D
� ÿ�1� e�

�����
t0
D

r �1
0

 
@ ~C

@Z2

!
Z2�0

dT, �63�

for example

Sh � 2

��������
t0
pD

r
: �64�

The amount of the gas absorbed (Q kg/m2) for the

time interval t0 s is:

Q �
�t0
0

I dt � 2c�
���������
Dt0
p

r
: �65�

7. Conclusions

The results reported (Eqs. (50), (52) and (53)) show

that the temperature is practically a constant value and
does not in¯uence the ®eld of velocity and concen-
tration. They di�er from the solution of the Benard

problem [17±22], where Vz � Vr � Vj � 0, because the
e�ect of the non-linear mass transfer do not allow the
existence of a mechanical equilibrium, where the liquid

may stay immobile.
The experimental results from the absorption of

CO2 in an immobile layer of water [25] show that the

rate of the absorption is signi®cantly greater than the
one that can be determined from Eqs. (62)±(65). This
fact indicates that the non-stationary process that is
described by Eqs. (50), (52) and (53) (analogous to the

Benard problem) is unstable, regarding small periodical
disturbances. Their increment may lead to new period-
ical ¯ows with a constant amplitude, which will evi-

dently change the mechanism and the kinetics of heat
mass transfer. For this aim, the linear analysis of stab-
ility will be used in the second part of this work.
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